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ABSTRACT 

The effects of normal surface suction and blowing on the Strouhal frequencies in vortex shedding over 
porous square cylinders was analysed numerically. The general characteristics determined were (1) an 
initial increase followed by a decreasing behaviour in the Strouhal frequency with increasing suction velocity 
and (2) a decrease in the Strouhal frequency with increasing blowing velocity. The numerical results were 
compared to an existing preliminary model, yielding fairly close agreement. 

KEY WORDS Vortex shedding Surface suction and blowing Strouhal frequencies Navier-Stokes equations 
Finite element method 

INTRODUCTION 

The studies of vortex shedding over various structural shapes in the past have contributed to 
better understanding of areas such as aerodynamics and aeroelastic characteristics. This in turn 
will allow improved engineering designs much needed for better energy conservation of higher 
performance. Practical applications involve the design of automobiles, tall buildings, suspension 
bridges, heat exchangers, chimneys, etc.1,2. 

Abundant research had been done in the analysis of Strouhal frequencies (St) in vortex shedding 
over impermeable bodies. The analytical, numerical, and experimental results can be easily 
obtained in the publications of such work1-10. However, the Strouhal frequencies in vortex 
shedding over porous surfaces involving suction or blowing has not been widely researched. 
The only study found dealing directly with the problem were from the preliminary model of 
flows over porous cylinders by Cohen11. In this study, Cohen derived a model to predict the 
general effect of normal suction and blowing on the St-Re relationship. 

The interest of this investigation is to numerically analyse the Strouhal frequencies in vortex 
shedding over porous square cylinders with various suction and blowing velocities. A comparison 
of the analytical and numerical solutions will help to assess the validity of the theoretical 
predictions and provide insights to the suction and blowing problem. 

The finite element method used for this analysis is a fourth-order Runge-Kutta time integration 
scheme based on the Chorin's splitting scheme12. Three benchmark cases were examined to 
verify the numerical algorithm. 
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PRELIMINARY MODEL FOR PREDICTING THE EFFECTS OF SURFACE SUCTION 
AND BLOWING ON STROUHAL FREQUENCY 

A simple model was derived by Cohen11 to predict the general characteristics of vortex shedding 
over cylinders with surface suction and injection. The basis of this model is the assumption that 
the viscous length is directly proportional to the boundary layer thickness, δ. A brief summary 
of the derivation is given. 

The model was first derived using scaling arguments to predict the characteristics of St for 
flow over a solid, circular cylinder with a radius R. In the interest of space, we shall forego the 
details of the derivation and refer the interested reader to Cohen11. The final results, however, 
are as follows: 

where Re0 = v0d/v, Re∞ = Ud/v, U is the freestream velocity, v0 is the suction or blowing velocity, 
v is the fluid viscosity, and d is the cylinder diameter. These predicted results are shown graphically 
as in Figure 1. This Figure indicates that there exists a critical Re∞, defined as: 

such that, if Re∞«Re∞critical, then the effects of suction or blowing must be accounted for. Else 
if Re∞»Re∞critical, then these effects become negligible, and the cylinder can be treated as 
impermeable. At the region where Re∞≈Re∞critical(Re20/Re∞≈1), denoted by the broken lines 
in Figure 1, ∆St should be less than ±10% or +20%. For systems operating at Re∞«Re∞critica, 
the predicted results also indicated that, on a log-log plot shown in Figure J, the slopes of all 
the St-Re20/Re∞, curves will asymptotically approach +1 for suction and —1 for blowing, for 
all suction and blowing velocities. 

It was also mentioned by Cohen that there may exist an upper bound for the normal suction 
problem. As the suction velocity increases, the onset of flow separation may be delayed, and 
vortex shedding may become completely suppressed. 
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NUMERICAL APPROACH 

The numerical algorithm used for this study was based on the explicit fourth order Runge-Kutta 
scheme13. In computing the solutions for flows past cylinders, a fixed perturbation was not 
imposed. It is the numerical noise which leads the symmetric flow into a vortex shedding state. 
The numerical noise is composed of discretization and roundoff errors14. 

Navier-Stokes equations 
For an incompressible flow, the time-dependent Navier-Stokes equations are: 

Here u is the velocity vector, p the pressure; Re= Ud/v the Reynolds number, where U, d are 
the characteristic velocity and length, respectively, v the kinematic viscosity; and S, a source 
term which represents external forces, such as gravity or electromagnetic force. 

To complete the formulation, a set of boundary and initial conditions are required. The 
Dirichlet boundary condition for the velocity may be expressed as: 

where û denotes the function that is given on the boundary, Γ1. 
The specified stress boundary condition can be expressed as: 

where is a specified stress function on the boundary Γ2. Γ=Γ1∪Γ2, is the boundary of the 
domain. 

The outflow boundary Γ3, which is a part of the boundary Γ2 is shown in Figure 2, where 
the two right-most columns of the mesh are considered. Taking the normal and tangential 
derivatives of the Navier-Stokes equations and using the continuity equation, the pressure 
Poisson equation for the boundary can be obtained as: 

Dirichlet boundary condition is required to solve for (9). However, for the nodes on which 
Dirichlet boundary condition is given will remain the same forever and thus as time progresses the 
vortex will not shed. Therefore, to overcome the above difficulty, right-most columns of the 
mesh are used approximately. The integration of (9) for the last strip of elements as shown in 
Figure 2 can be performed and it leads to the following set of equatiions: 

where pn + 1 on Γ3 are unknown, pn on the adjacent nodes are known, A is the Laplacian matrix, 
qn is the velocity gradient vector on the right hand side of (10). Thus, only the pressure at t=0 
is needed to solve for (10). This approach was adopted by Shimura and Kawahara4 using one 
step explicit velocity correction method. 

Let the initial condition be given by: 
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Then it is required that: 

and 

in order that a solution exist. The above conditions are known as solvability conditions for the 
Navier-Stokes equations. Navier-Stokes equations are ill-posed if any of the above two 
conditions are violated15. 

Solving for pressure 
Apart from the fact that Navier-Stokes equations are non-linear, the absence of pressure in 

the continuity equation in the case of incompressible flow poses the biggest problem. In 
compressible flow the time derivative of pressure appears in the continuity equation and 
evaluation of pressure does not pose as much challenge as it does in incompressible flows. Direct 
solution of u and p would require the approximating spaces satisfy the Babuska-Brezzi stability 
criteria. In order to satisfy the Babuska-Brezzi stability criteria the approximating spaces for 
the pressure are chosen to be of lower order than those used for velocities, i.e. staggered grids 
or mixed formulations need to be used. 

However, if u and p are solved for in a decoupled manner, then we could obtain stable solution 
using both staggered and non-staggered grids16. There are two common formulations for the 
numerical solution of the incompressible Navier-Stokes equations in primitive variables, the 
artificial compressibility and the pressure Poisson equation method. The velocity field is 
calculated from the time dependent momentum equation using time marching techniques, while 
each method employs a different equation to compute the pressure. In the artificial compressibility 
method, a time derivative of the pressure is added to the continuity equation and the 
incompressible field is treated as compressible during transient calculations17. On the other 
hand, the pressure Poisson method replaces the continuity equation with a second-order elliptic 
Poisson equation for the pressure18. However, if artificial compressibility method is chosen then 
equal order approximations for pressure and velocity would require that a fourth order pressure 
derivative be added to the continuity equation to stabilize the solution. But no such stabilizing 
term is inherent in the procedure. We chose to use the pressure Poisson equation since it was 
felt that artificial compressibility method may impose a more stringent restriction on the time step. 

Temporal discretization 
The best approach to date for computing the time evolution of the Navier-Stokes equations 

is Chorin's time-step splitting technique. 
In Chorin's approach explicit techniques are used to advance the velocity one time step while 

the new pressure is found by solving a linear partial differential equation. The first step is to 
predict the solution ū to (5) at the (n+l)th time step that would result if the pressure term 
were neglected. Replacing the time derivative by (ūn-1 - ūn)/∆t gives: 

where the superscript n denotes the nth time step. The second step is to develop the pressure 
and corrected velocity fields that satisfy the continuity equation by using the relationships: 
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Note that the size of a stable time-step ∆t can be increased by using an adaptation of Runge-Kutta 
techniques at the high Reynolds number and the Stokes solution at the low Reynolds number. 
An equation for the pressure can be obtained by taking the divergence of (15). In view of (16), 
one has: 

If p satisfies (17), then un+1 does indeed satisfy (16). Based on the Chorin's projection method, 
the four stage Runge-Kutta method can be described as follows: 

Stage 1: 

Stage 2: 

Stage 3: 

Stage 4: 
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Spatial discretization 
The previous section dealt with the temporal discretization strategy for the Navier-Stokes 

equations. Spatial discretization in finite element method involves the dividing of the physical 
domain into small elements which could be of any shape like triangles, rectangles, etc. The 
unknown function is assumed to have a polynomial variation within the element and is expressed 
in terms of the nodal variables. Depending on the type of polynomial variation desired we need 
to place that many nodes in each element. For our discretization we chose 4-noded isoparametric 
elements with equal order approximations for velocity and pressure. Finite elements offer a rich 
variety of elements that can be used for spatial discretization as explained very well in Huebner19. 
With this spatial discretization and use of Galerkin weighted residual formulation we arrive at 
a system of matrix equations as given below: 

Stage 1: 

Stage 2: 

Stage 3: 
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Stage 4: 

where M, K, A, D, and H are the mass, convection, diffusion, divergence, and gradient matrices, 
respectively. Ω results from the imposition of natural boundary conditions and the exertion of 
a body force. MD is the diagonalized mass matrix obtained simply by summing across each row 
of the consistent mass matrix M and placing the results in the diagonal. Matrix A is a direct 
Galerkin finite element approximation to Ñ2. No stabilizing term is inherent in the procedure. 
The advantage of using this four stage Runge-Katta scheme is that the time step used can be 
much larger than that of the first-order projection scheme20. For flows which may involve high 
Reynolds numbers, it is beneficial to adapt this approach since a large time step is allowed. 

TEST EXAMPLES 

Three test cases are selected for the evaluation of the numerical accuracy of our method. They 
are: (1) the standing vortex problem, (2) 2D laminar flow inside a wall-driven cavity with different 
Reynolds number ranging from Re=1 to 1000, and (3) flow past a rectangular cylinder at 
Re = 250. The criterion for convergence to steady state for test cases (1) and (2) was generally 
taken to be: 

where || u || t is the L1 norm obtained as the sum of the absolute value of all velocity components 
on the interior grid multiplied by the cell size. 

Standing vortex problem 
The standing vortex problem is computed to verify the present formulation. This problem 

was introduced by Gresho15 and was studied by Tezduyar and his research group20 using various 
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Table 1 Time history of the vortex kinetic 

Time 

Explicit 
Adams-Bashforth 
Taylor-Galerkin 
Runge-Kutta 

0.5 

0.996 
0.996 
0.962 
0.997 

energy (%) 

1.0 

0.991 
0.991 
0.928 
0.994 

1.5 

0.987 
0.987 
0.898 
0.991 

2.0 

0.983 
0.983 
0.870 
0.988 

2.5 

0.980 
0.979 
0.846 
0.985 

3.0 

0.977 
0.975 
0.823 
0.982 

theta methods. The motion of the fluid here is governed by the assumption of an ideal fluid 
flow in a square cavity. The initial condition (see Figure 3) consists of zero radial velocity and 
with circumferential velocity is given by uθ=(5r for r<0.2, 2 —5r for 0.2<r<0.4, 0 for r>0.4}. 
The total numbers of nodal points and finite elements are 961 and 900, respectively. The computed 
results are shown in Figures 4 and 5. From these Figures it can be seen that at t = 3, the present 
scheme introduces an artificial diffusion by an amount of 1.8% which is comparable to T6 
formulations20. Finally, Table 1 illustrates, the comparison of how much vortex kinetic energy 
is preserved in the domain with three other methods reported by Ramaswamy et al.21 at different 
time levels. 

2D laminar flow inside a wall-driven cavity 
The second test example is the 2D laminar flow inside a wall-driven cavity. This example has 

been chosen to demonstrate the validity of the present computing technique with a highly 
non-linear effect. The computational results of the present study are compared with those of 
Ghia et al.22 who used a multigrid finite difference method for the streamline-vorticity 
formulation with fine meshes. 

In the present study, 40 x 40 elements are used with fine meshes near the walls. A pressure 
datum p = 0 is specified at the middle of the bottom wall. Computed steady state velocity vectors 
and pressure contours are shown in Figure 6 for Reynolds numbers 1,100,400 and 1000. Pressure 
values are given in Table 2. Finally, as a quantitative measure of solution accuracy, in Table 3 
we compare the properties and secondary vortices with those given in Ghia et al.22, the agreement 
should be considered satisfactory. In this Table, we also provide the time increment ∆t and 
CPU time to reach the same t by the other three schemes reported in Reference 21 for each Re. 
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Table 2 Values of pressure contours in Figure 6 

Contour 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 

- 9 . 6 0 
-6 .40 
-4 .00 
-1 .50 

0.00 
1.50 
4.00 
6.40 
9.60 

Reynolds number 

100 

-0 .08 
-0 .06 
-0 .04 
-0 .02 

0.00 
0.02 

— 
— 
— 

400 

-0 .10 
-0 .08 
-0 .06 
-0 .04 
-0 .02 

0.00 
— 
— 
— 

1000 

-0 .10 
-0.08 
-0 .06 
-0.04 
-0 .02 

000 
— 

— 

Table 3 Stream function extrema 

Re 

100 

400 

1000 

Method 

Present study 

Ghia et al. 

Present study 

Ghia et al. 

Present study 

Ghia et al. 

Primary 
vortex 

-0.103 

-0.103 

-0.114 

-0.114 

-0.118 

-0.118 

Bottom left 
'1' vortex 
(large) 

Bottom right 
'1' vortex 
(large) 

4.60×10-6 

1.21×10-5 

1.75 ×10-6 

1.25 ×10-5 

1.53×10-5 

6.58 ×10-4 

1.42 ×10-5 

6.42 ×10-5 

2.29×10-4 

1.76 ×10-3 

2.31 × 10-4 

1.75 ×10-3 

Bottom left 
'2' vortex 
(small) 

Bottom right 
'2' vortex 
(small) 

— 

— 

— 

— 

-6.54 ×10-7 

-9.32×10-8 

CPU* 

124.2 

— 

201.5 

— 

401.7 

— 

∆t 

0.05 

— 

0.05 

— 

0.05 

The present technique is comparable in terms of accuracy and efficiency to semi-implicit method 
reported in Reference 21. 

Flow past a square cylinder 
The above two test cases are concerned with the enclosed cavity. In this subsection numerical 

results for flow past a square cylinder at Re=250 are presented in order to verify the features 
of the outflow boundary procedure. The calculated results are compared with experimentally 
and numerically observed ones, which are reported by Davis and Moore1. The finite element 
mesh (4375 nodes and 4220 elements) and the boundary conditions are shown in Figure 7. At 
the inlet boundary, a uniform velocity distribution is assumed. The outlet boundary is assumed 
to be traction free. To solve the Poisson equation for pressure, the outflow boundary condition 
is used as described before. Along the other two boundaries, tangential tractions and the normal 
velocity components are assumed to be zero. The non-slip condition is prescribed at the cylinder 
surfaces. Plot regions for vectors and pressure contours at t = 25 and t= 187.5 as shown in 
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Figures 8 and 9 are from x= 1.0 to x= 19.0; y=3.7 to y= 11.3. In early time steps symmetric 
twin vortices are shown behind the cylinder. After the flow became asymmetric, a regular periodic 
shedding was attained at about t = 75. In Figure 10 variations of the drag coefficient CD , the lift 
coefficient CL and non-dimensional pressure at each centre of the cylinder sides are plotted 
during many cycles of periodic shedding. Finally, Table 4 shows the comparison of the computed 
results with the experimental observations made by Davis and Moore1. 



STROUHAL FREQUENCIES IN VORTEX SHEDDING 369 

NUMERICAL ANALYSIS OF EFFECTS OF SURFACE SUCTION AND BLOWING ON 
STROUHAL FREQUENCY 

The primary objective of this investigation is to numerically determine the effects of surface 
suction and blowing on the St. It is also of interest to determine the slopes of the 
log St —log(Re2o/Re∞) curves and to determine if the St is affected by varying Re∞ at a constant 
Re2o/Re∞. The fourth objective is to determine the asymptotic value of v0 (surface velocity) at 
which vortex shedding becomes suppressed. Lastly, the critical value of v0 below which ∆St 
becomes negligible should also be determined. Some of these results are then compared to the 
theoretical predictions derived by Cohen11. Note that the cylinder surface velocity, v0 , is non-zero 
for the porous square cylinder. The results of the numerical analysis on the effects of normal 
surface suction and blowing on the St are summarized in Table 5. The Strouhal frequencies are 
plotted versus the suction and blowing velocities in Figure 11, while the numerically obtained 
log St—log(Re2o/Re∞) relationship is shown in Figure 12. Discussions of the numerical results 
are now given separately for the suction and blowing problems. 

Suction. As shown in Table 5, the range of suction velocity between 0.01 and 0.45 was 
investigated. The fully developed flow for moderate suction velocities are similar to the flow 
over a solid cylinder shown in Figure 9. Figure 13 shows the fully developed flow for a high 
suction velocity of 0.4 at t= 187.5. At this suction velocity the wake region is not as distributed 
as the flow with a lower suction velocity. The suction velocity of 0.4 is very close to the critical 
velocity at which vortex shedding becomes suppressed, which is between 0.4 and 0.45 from Table 
5. Therefore, the flow at a suction velocity of 0.4 is almost dominated by the suction, and its 



370 LISA M. LING ET AL. 

Table 4 Some global quantities associated with vortex shedding 

Source 

Davis & Moore 
Present study 

Shedding 
period 

5.9-6.3* 
5.97 

*Numerical (several meshes) and experimental 

Wavelength 

5.9 
5.83 

Drag 
coefficient 

1.73-1.81 
1.59-1.73 

Lift 
coefficient 

-0.50-0.50 
-0.51-0.51 

wake region becomes less affected by the shedding of vortices. Figure 14 shows the suction 
dominated flow with a v0 of 0.45 at t = 187.5 where vortex shedding diminishes. The effect of 
suction on the flow velocity in the wake for downstream is negligible; here, the velocity is very 
close to the freestream velocity. Note that the pressure contour is symmetric. 

The effect of varying Re∞ on St while keeping Re2o/Re∞ constant was determined. At a ratio 
of Re2o/Re∞ = 2.5, the Re∞ was increased from 250 to 500, and the suction velocity was lowered 
from 0.1 to 0.007071. The increase in the St was about 3%. At a ratio of Re2o/Re∞ = 22.5, the 
Re∞ was increased from 250 to 500, and the suction velocity was lowered from 0.3 to 0.21213. 
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Table 5 Results of effects of normal surface suction and blowing 

Type 
of 
cylinder 
surface 

With 
suction 

Solid 

With 
blowing 

Surface 
velocity 

-0 .45 
-0 .40 
-0 .30 
-0 .20 
-0 .15 
-0 .10 
-0 .05 
-0.025 
-0 .01 

0 

0.01 
0 025 
0.05 
0.10 
0.15 
0.20 

St 

0 
0.089 
0.128 
0.157 
0.180 
0.205 
0.206 
0.190 
0.182 

0.177 

0.173 
0.166 
0.151 
0.142 
0.132 
0 

Period 

∞ 
11.190 
7.830 
6.368 
5.543 
4.883 
4.845 
5.273 
5.505 

5.655 

5.798 
6.030 
6.608 
7.043 
7.605 

∞ 

50.625 
40 
22.5 
10 
5.625 
2.5 
0.625 
0.156 
0.025 

0 

0.025 
0.156 
0.625 
2.5 
5.625 

10 

%∆St(1) 

- 1 0 0 
-49 .4 
-27 .8 
-11 .2 

+ 2.0 
+ 15.8 
+ 16.7 

+ 7.3 
+ 2.8 

— 

- 2 . 4 
- 6 . 2 

-14 .4 
-19 .7 
-25 .6 

- 1 0 0 

Note: (1) %∆St is the % deviation of St from the St for an impermeable cylinder 

amplitude 

0 
1.58 
1.61 
1.39 
1.22 
1.04 
0.73 
0.53 
0.50 

0.51 

0.53 
0.56 
0.68 
0.58 
0.30 
0 

Cd 

range 

1.00 
1.28-1.72 
1.67-1.98 
1.77-2.15 
1.72-2.15 
1.64-2.09 
1.43-1.70 
1.43-1.58 
1.51-1.65 

1.57-1.72 

1.63-1.79 
1.71-1.88 
1.89-1.98 
1.95-2.04 
1.98-2.01 
1.86 

The increase in St was 28.4%. Therefore, these initial results indicate that St is dependent on 
Re∞ at a constant ratio of Re2o/Re∞. This is contradictory to the original model. 

Blowing. The range of blowing velocity between 0.01 and 0.2 was investigated as shown in 
Table 5. The partly developed flow for a blowing velocity of 0.1 at t = 75 is shown in Figure 15. 
At this stage, it is clearly seen in Figure 15a that the vortex shed was not immediately broken 
down as it is carried downstream; two separate vortices are present in the domain plotted. As 
the flow develops further at t = 187.5, only one vortex is seen in Figure 16a. Figure 17 shows 
the fully developed flow for a high blowing velocity of 0.15 at t = 247.5. It is seen that the region 
close to the cylinder is dominated by the blowing process. Vortices are therefore shed not directly 
off of the cylinder surface but at a relatively long distance downstream. Note that a blowing 
velocity of 0.15 is very close to the critical velocity at which vortex shedding becomes suppressed, 
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which is determined to be between 0.15 and 0.2 from Table 5. At this blowing velocity of 0.15, 
a much longer time was required for the flow to become fully developed. Figure 17 shows the 
stage where the flow had just become fully developed. When blowing velocity is further increased 
to 0.2, the flow field becomes totally dominated by the blowing, and vortex shedding almost 
disappears as seen in Figure 18 at t = 187.5. The effect of blowing is strong in the wake even at 
a distance far downstream. It can be seen that weak circulations may be present in the wake 
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far downstream. This is a possible cause for the pressure contour to be slightly asymmetric in the 
region far downstream. 

The effects of varying Re∞ on St at a constant Re2o/Re∞ was determined. At a constant ratio 
of Re2o/Re∞ = 2.5, the Re∞was increased from 250 to 500, and the blowing velocity was lowered 
from 0.1 to 0.07071. The decrease in the St was less than 8%. At a ratio of Re2o/Re∞ = 5.625, 
the Re∞ was increased from 250 to 500, and the blowing velocity was lowered from 0.15 to 
0.10607. The decrease in the St is only 1%. Therefore, these initial results indicate that the effects 
of varying Re∞ on the St for a particular Re2o/Re∞ are only slight for the blowing problem. This 
agrees with the original model's prediction that St depends only on Re2o/Re∞. 

Comparison and discussion of the analytical and numerical solutions 
The numerical results obtained in this investigation supported Cohen's theoretical prediction 

near the critical Re2o/Re∞. As predicted, the St decreased as the blowing velocity decreases, and 
the St increased as the suction velocity increases. However, a limiting velocity, vlim, exists for 
the suction problem such that, when vlim is exceeded, St will begin to decrease instead of increase. 
The non-dimensional vlim was determined to be between —0.025 and —0.1. This phenomenon 
is not predicted by the model. As suggested by Cohen, an upper bound exists for the suction 
problem where vortex shedding becomes completely suppressed. This non-dimensional upper 
bound v0 was found to be between —0.4 and —0.45. For a cylinder with suction velocity greater 
than this, the boundary layer will have minimal thickness. Therefore, since vortex shedding 
originates from the boundary layer, vortex shedding will also diminish. For the St to be a 
continuous function of v0 , St must first decrease before reaching zero at the upper bound value 
of v0 . Near vlim, a possible physical explanation for the increasing St to reverse and begin 
decreasing is that the vortex shedding may begin to overlap as v0 increases and δ decreases. 
The theoretical prediction was for the vortex shedding to increase as v0 increases. However, as 
the vortices are formed and shed at an increasing rate, they may begin to overlap, thus decreasing 
the actual shedding frequency instead of increasing it. This probably explains the initial rise 
followed by the decreasing behaviour of the St. 
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According to our computations, vortex shedding eventually disappears as the blowing velocity 
reaches a certain value. This is probably because a high rate of blowing causes the formation 
of a 'solid body', analogous to the Rankine half body (i.e. line source superposed on uniform 
flow) in potential flow theory. This is evident upon examining Figure 18a. Thus, viscous effects 
arising from fluid-solid wall interactions are considerably reduced, and hence, vortex shedding 
is eliminated altogether. As shown in Table 5, this non-dimensional upper bound v0 is between 
0.15 and 0.2, which is less than 20% of the freestream velocity. This shows that, for vortex 
shedding suppression, a much smaller v0 is required for the blowing problem than for suction. 
Therefore, given a choice between surface suction or blowing for practical design applications, 
such as in suppressing vortex shedding, then surface blowing would be favoured over surface 
suction. 

The change in St accelerates as v0 increases, and the slopes of the log St—log(Re2o/Re∞) curves 
are not ±1 as predicted by Cohen. The slopes vary for different v0, ranging from —0.05 to 
—0.09 for the blowing problem. For the suction problem, the slope varies from 0.02 to 0.06 for 
v0 below vlim and from —0.16 to —0.62 for v0 greater than vlim. 

As seen in Table 5, the change in the St is less than ±20% at Re2o/Re∞≈1 which is in 
accordance with Cohen's prediction. If ∆Sr< 10% were the criteria for the ∆St to be considered 
as negligible, then the critical value of v0 for the suction problem would fall between —0.025 
and —0.05. For the flowing problem, the critical v0 would fall between 0.025 and 0.05. Porous 
cylinders operating at v0 below the critical value can then be treated as impermeable. 

The St—Re∞ relationships obtained experimentally, and numerically have shown that the St 
characteristics for solid circular and square cylinders are not notably different. By extrapolating 
these results to include surface suction and blowing, it is assumed that the results for the porous 
cylinder and square cylinders also will not differ significantly at a low Re∞. This was the reason 
why the analytical predictions were compared with the numerical results, even though different 
body shapes were used. However, it is important to keep in mind the future experimental results 
may indicate that the results are actually significantly dependent on the body shape. 

Overall, by comparing the analytical and the numerical log St—(Re2o/Re∞) relationships 
plotted in Figures 1 and 12, fairly good agreement exists between the analytical and numerical 
results. The only significant difference is the unexpected decreasing portion of the curve 
determined numerically for suction. 

CONCLUSIONS 

The Runge-Kutta finite element method used in this analysis was verified by examining three 
test examples. The solutions were found to be in excellent agreement with existing numerical 
results. 

The behaviour of the St for the suction and blowing problem was determined numerically. A 
comparison of the numerical and analytical results showed that Cohen's boundary layer growth 
and collapse model of vortex shedding appears to successfully predict the deviation of the St 
(from the impermeable case) near the critical Re2o/Re∞, i.e. suction tends to increase the St, 
whereas blowing decreases it. The model, however, fails grossly at larger values of Re2o/Re∞. 
For the suction problem, the following conclusions were formed: 

1. St increases with increasing suction for v0 below vlim determined to be between —0.025 
and —0.1. At v0 beyond vlim, St will decrease with increasing suction. 

2. The asymptotic value of v0 at which vortex shedding is suppressed is determined to be 
between —0.4 and —0.45. 

3. Letting ∆St< 10% be the criteria for negligible change in St, the critical value of v0 would 
fall between —0.025 and —0.05 (for v0 below vlim). Cylinders with surface suction velocities 
less than this critical v0 can then be treated as impermeable. 
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4. St is dependent on Re∞ at a constant ratio of Re20/Re∞. 
5. The slope of the log St—log(Re20/Re∞) curve ranges from 0.02 to 0.06 for v0 below vlim 

and from — 0.16 to — 0.62 at v0 greater than vlim. The change in St accelerates as v0 increases. 
For the blowing problem, the following conclusions were made: 

1. St decreases with increasing blowing. 
2. The asymptotic value of v0 at which vortex shedding is suppressed is determined to be 

between 0.15 and 0.2. 
3. Letting ∆St< 10% be the criteria for negligible change in St, the critical value of v0 would 

fall between 0.025 and 0.05. Cylinders with surface blowing velocities less than this critical 
v0 can then be treated as impermeable. 

4. For the same value of Re20/Re∞, the St will decrease slightly as Re∞ increases. 
5. The slope of the log St—log(Re20/Re∞) curve ranges from —0.05 to —0.09. The change in 

St accelerates as v0 increases. 
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